
As explained in the previous section, how a Turing Machine processes the
input depends on a set of transitions, on the input word, and on the initial
state. Once the processing finishes, to know if at the end of an execution the
machine accepted the input, we must specify a set of accepting states.

Easy as it sounds, to program a TURING MACHINE you must provide the
transitions, the initial state and the accepting states. Before explaining how to
define these three objects, we will show how to use the controls of the
machine. Assume you already programmed your TURING MACHINE.
Probably your code looks something similar to Figure 1.

Once your machine is programmed,
you must click the green COMPILE
button. If your code has any errors,
the compiler will let you know one by
one the lines you must change. If
not, the machine panel will come up
(see Figure 2).

As the first section explained, Turing
machines are intended to process
inputs. Hence, before running your
machine you must provide an input
word in the bottom left corner of the
machine panel and click the Load
button. Now you are ready to start
using the play, pause, stop and step
buttons to run the machine. If you
want to have a try, use the code from
one of the examples on the website.

Page � of �1 2Martin Ugarte

Tutorial for TURING MACHINE

Figure 2

Figure 1

http://martinugarte.com/static/pdf/what_is_a_turing_machine.pdf
http://martinugarte.com/static/pdf/what_is_a_turing_machine.pdf

Now let’s see how to program a TURING MACHINE. As already mentioned,
everything you must provide is the set of transitions, the initial state and the
accepting states. Providing the initial and accepting states is straight-
forward. For example, the machine programmed in Figure 1 has initial state
q0, and accepting states q10 and q11. Figure 1 also shows how to give a
name to your machine.

Next we must provide the transitions. Recall from the first section that a
transition of a Turing machine looks similar to this:

States S1 and S2 can be any state of the machine, and symbols L1 and L2
can be practically any symbol. The head can move one cell right, one cell
left, or stay where it is. To encode this we use the symbols shown in Table 1.

To write one transition we use two lines. One for
representing the executing condition and the
other to represent the instruction. To encode the
executing condition just write the name of the
state S1 and the symbol L1 separated by a
comma. To encode the instruction, write the name
of the state S1, the name of the letter L2 and the

symbol representing the head’s move. For example, the transition coded in
lines 5 and 6 of Figure 1 is read as next:

A final comment on the programming language is that we use underscore (_)
to encode blank cells. For example if you want to write a transition which’s
condition is ‘If the machine is in state q, reading a blank cell’, the first line of
that transition would be ‘q,_’.

To see a complete programming example visit the next section.

Page � of �2 2Martin Ugarte

If the machine is in state
S1 and the head is

reading the symbol L1

Switch to state S1, write
symbol L2 and move

the head right

InstructionExecuting condition

Movement Representation

Stay -

Move right >

Move left <

If the machine is in state
q0 and the head is
reading the letter 0

Switch to state qRight0,
write letter 1 and move

the head right

InstructionExecuting condition

Table 1

http://martinugarte.com/static/pdf/what_is_a_turing_machine.pdf
http://martinugarte.com/static/pdf/programming_example.pdf

